

DEPARTMENT OF COMPUTER APPLICATIONS

M.PHIL. COMPUTER SCIENCE

REGULATIONS AND SYLLABUS

[For the candidates admitted from the Academic Year 2022 – 2023 onwards]

ALAGAPPA UNIVERSITY

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle andGraded as Category-I University by MHRD-UGC) Karaikudi - 630003, Tamil Nadu

DEPARTMENT OF COMPUTER APPLICATIONS Choice Based Credit System (CBCS)

M.Phil. (Computer Science) Regulations 2022 onwards

1. Candidates for admission to the Master of Philosophy in Computer Science M.Phil.(Computer Science) programme is required to pass in any one of the following Examinations of any recognized University with a minimum of 60% marks in (minimum 55% marks for SC/ST candidates):

M.Sc. Degree in Computer Science/Information Technology or M.C.A. or any qualification equivalent thereto.

- 2. The M.Phil.(Computer Science) programme is a one year programme consisting of two semesters. Each semester consists of minimum 75 working days at the rate of 6 hours per day.
- 3. The course of study and the scheme of Examinations are shown in Appendix A.
- 4. The End-Semester Examinations are conducted in November and April of every academic year by the University in different courses according to the scheme given in Appendix A. A candidate will be permitted to appear for the Semester examination in a particular course at the end of each semester provided he/she secures not less than 75% of attendance in each course in that semester.
- 5. The revised curriculum is offered from the academic year 2022-2023.
- 6. Each student should take 40 credits to complete M.Phil. (Computer Science) programme.
- 7. Each theory course carries 5 credits with 75 marks in the End-Semester Examination and 25 marks in the Internal Assessment.
- 8. The End-Semester Examinations will be conducted for three hours duration.
- 9. Dissertation carries 20 credits. Dissertation carries 75 marks in the End-Semester Examination (50 marks for Dissertation Evaluation by External Examiner and 25 marks for viva-voce jointly awarded by both Internal and External Examiners) and 25 marks in the Internal Assessment (Dissertation monitoring and Evaluation by the Internal Examiner).
- 10. To pass in each course, a candidate is required to secure 40% marks in the Semester examinations and 40% marks in the Internal assessment and 50% marks in aggregate (marks in Semester Examination + marks in Internal Assessment).

- A student is permitted to continue the programme from I to II semester irrespective of failure(s) in the courses of the earlier semester. The candidate will qualify for the M.Phil. (Computer Science) degree only if the student passes all the arrear courses within a period of THREE years.
- 12. Results will be declared after the completion of each End-Semester Examination and the marks/grades obtained by the candidates will be forwarded to them through the Head of the Department.
 - a) A Candidate who has passed all examinations in the first attempt within one year of admission is declared to pass in First Class with Distinction provided the candidate secures more than 75% marks in the aggregate.
 - b) A candidate who has passed all the examinations within one year of admission is declared to have passed in First Class provided the candidate secures not less than 60% in the aggregate.
 - c) All other candidates who have passed all the examinations in the prescribed courses shall be declared to have passed in Second Class.
- 13. All the candidates who have passed the examinations in all the prescribed courses shall be eligible for the award of the Degree of Master of Philosophy in Computer Science namely M.Phil. (Computer Science).
- 14. The common CBCS regulations prescribed for the Departments by the Alagappa University will be followed in all respect.

Programme Objectives

- To improve the standards of research.
- To introduce research skills and specialize in a relevant research interests
- Able to apply advanced theoretical and experimental methods, including the use of techniques, tools and simulations.
- Helps to inculcate research aptitude to pursue research leading to Ph.D.

Programme Specific Objectives

- This curriculum offers a number of practical exposures which equips the students to face theresearch challenges in computer science
- This programme introduce the new concepts and their applications which is useful in pursuing theresearch.
- It prepares a student to take minor research projects, to become project associate.
- Develops the ability to critically evaluate his current research topic, research techniques and methodologies

Programme Outcomes

- After completion of M.Phil. Program, students are gaining through research knowledge incomputer science.
- Students will be able to publish research articles in reputed journals.
- This programme equips the students to become effective teachers and researchers in computerscience, to contribute to the needs of the society.

DEPARTMENT OF COMPUTER APPLICATIONS

Course Code	Course/Title	Credit	Hours	Mark	(S	Total
			/Week	Inte	Exte	
				rnal	rnal	
	I SEMES	STER	ł	1	H	
561101	Research Methodology	4	4	25	75	100
561102	Advanced Computing	4	4	25	75	100
	Techniques					
561103	General Skills in Science	4	4	25	75	100
	Total	12	12	-	-	300
	II SEME	STER	ł	1	H	
	Elective – I	4	4	25	75	100
561999	Dissertation	8	-	25	75	100
	Total	12	4	-	-	200
	Grand Total	24	2	Tota	l Marks	500

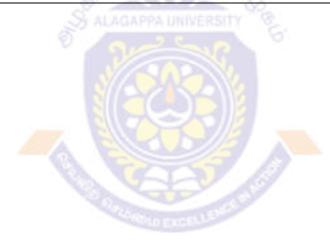
M.Phil. (Computer Science)

ELECTIVE COURSES

Course	Title of the Course
Code	
561551	Information and Network Security
561552	Advanced Operating Systems
561553	Data Warehousing and Mining
561554	Artificial Intelligence and Machine Learning
561555	Mobile Computing
561556	Internet of Things
561557	Deep Learning
561558	Digital Image Processing
561559	Cloud Computing
561560	Big Data Analytics
561561	Blockchain Technology

		Semester – I		
Course (Code:	RESEARCH METHODOLOGY	Credits:4	Hours:4
561101			-	
Objectives	1	the basic concepts on algorithms and research	ch	
	e	owledge on thesis writing.		
		and algorithms such as prim's algorithm, Di	jikstra's algorit	hm.
TT 1 / T		Soft Computing techniques.	<u> </u>	D 1
Unit- I		elims: Introduction – Mathematical tools	•	
	-	anagement – Types of research – Research		
	-	a – Secondary data – Data Presentation – I		
	Skewness.	easures of Central Tendency – Measures o	1 variation - 1 v	leasures of
Unit- II		Research: Introduction –Algorithmic Rese	arch Problems	Types of
01111-11	-	esearch Problems – Types of Solution Pro		
	-	s – Steps of Development of Algorith	-	-
	-	Stack–Queue– Linked Lists – Binary Tre		
		 Design of Experiments and Comparison 	-	ie analysis
Unit- III	-	gorithms: Backtracking – N-Queens probl		nian circuit
	-	bset sum problem – Branch and Bound		
	-	blem – Traveling salesman problem – (-	-
		ruksal's algorithm – Dijkstra's algorithm.	2	
Unit- IV	Soft Comput	ng Techniques: Basic concept of Soft Co	omputing – Cor	nponents –
	Characteristic	<mark>s – Applications – Fundamentals of Neura</mark>	al Networks: P	roperties -
	Architecture -	learning methods: activation functions; F	eed forward, F	eedback &
	recurrent Neu	ral Networks. Genetic Algorithm : Basic	concept - Role	of GA in
		Fitness function - Cross over - Mutation		
	Constraints 1	Handling; Applications - Travelling Sa	llesman Proble	em, Graph
	Coloring prob			
Unit- V		g: Writing at the Tertiary Level – Plannin	0	-
		g and publishing – The General Format –	0 1	
		Tables and Figures – References – Appendi	ices. Thesis Wri	iting tool –
~	Latex.			
Suggested I	U	" ING 1 1 P 2nd 1'd' DI		
		, "Research Methodology", 2 nd edition, PHI		
		, "Design and Analysis of Algorithms", 2 nd		-
	", 3 rd Edition, 1	DebdeepMukhopadhyay, 2016, "Cryptogr	aphy and Netw	vork
-			a witing?' Ath	dition
	n Anderson, M lley& Sons.	illicent Poole, 2001, "Assignment and Thesi	s writing , 4th e	anion,
	•	VijaylakshmiPai, 2013, "Neural Networks	Fuzzy Logic	& Genetic
		& Applications", PHI.	, ruzzy Logic	
e	•	A Beginners Guide to LaTeX", Lulu.com		
Ciletallo	5 more, 2015, 2	T Degniners Ourde to Later, Luiu.com		

Outcomes	After completing this course, students will be able to:			
	To study and understand the research methodology			
	Learn the basic methods for reading technical papers			
	> This purpose of this course is to impact knowledge on latex			
	To develop with an ability to apply knowledge of Softcomputing			
	technique			


		Semester – I		
Course (Code:	ADVANCED COMPUTING	Credits:4	Hours:4
561102		TECHNIQUES		
Objectives	\Rightarrow Develop the skills to gain a basic understanding of neural network theory and			
	fuz	zy logictheory.		
	≻ Intr	oduce students to artificial neural networks and learn	ing methods	
	≻To	Learn the Concepts data mining ,Hadoop network fra	amework	
Unit- I		S and Data mining: DBMS - Introduction of		· ·
		very techniques-Database System Architecture		-
	-	ession- Decision tree- Neural network- Ensemble r		_
	-	tics (Association rule, Segmentation, Social net		-
		ork framework. Introduction to Data Science : In		
		olution of Data Science – Data Science Roles –	-	
	•	ct – Applications of Data Science in various fields –	Data Security Is	ssues – Data
		ction Strategies – Data Pre-Processing.		
Unit- II		al image processing: Image Enhancement- Spatial d	• •	
	-	tion-Histogram Manipulation-Linear ,Non-Linear		
	-	borhoodoperation-Classification of noises in image		
		ering techniques- different type of Thresholding - Cl	assification of e	dges-shape
		sentation-Morphologyoperation.	~ · ~ ·	~ ·
Unit- III		ork Security: An Overview of Computer Security-		
		anisms-Security Attacks-Access Control Matrix,	-	
		dentiality policies, Integrity policies and Hybrid	-	-
		nes- Kerberos- Pretty Good Privacy (PGP)-Secu	ire Socket Lay	yer (SSL)-
TT •4 TT7		lers – HIDS- NIDS - Firewalls – Viruses.		· _
Unit- IV		icial Neural Network: Introduction of neural netw	•	
	-	perations-properties- defuzzyfication-fuzzy based and		-
	•	decision making-ART1 & amp, ART2 - Gene ization and search techniques-classification of G	e	
	-	hybrid - adaptive neuro fuzzy inference system-	-	
	-	d- Genetic based back propagation.	Genetic neuro	and fuzzy
Unit- V		ning Methods: Different learning methods and	learning rule	s-Different
Unit- V	netwo	•	-	ction and
		ematical formula and graphical representation		
		ptron-Back propagation network and its application	-	•
		ork and application-Self organized features map and		
		orks and its applications-Deep neural networks.	and approacions	
	netwo			

Suggested Readings:-

A Silberschatz, Henry F. Korth, 2010, "Database System Concepts", 6th Edition, McGraw Hill-Education. Cathy O'Neil and Rachel Schutt , 2015 "Doing Data Science", O'Reilly. Charu C. Aggarwal,2018, *Neural Networks and Deep Learning: A Textbook* 1st edition, SpringerJames A.Anderson, , 2001, "An Introduction to Neural Network", PHI. Jiawei Han, MichelineKamber, Jian Pei Professor, 2011, "Data Mining Concepts and Techniques", 3rd Edition, Morgan Kaufmann. JojoMoolayil, 2016 "Smarter Decisions: The Intersection of IoT and Data Science" PACKT, RafelC.Gonzalez, Richard E.Woods, 2017, "Digital Image Processing, Pearson", 4th Edition, PearsonEdutation.

Outcomes After completing this course, students will be able to:

- To understand the fundamental theory and concepts of neural networks, Network Security, algorithms, applications and their limitations.
 - > Understand the concepts of digital image processing
- > Learn about DBMS and Data mining

		Semester – I		
Course (561103	Code:	GENERAL SKILLS IN SCIENCE	Credits:4	Hours:4
Objectives	> Study	the basic principles and applications of compute	ers	1
	> Under	stand the concepts of computer operating skills		
	To lea	rn Pedagogical skill for science teachers		
	> Acqui	re the knowledge of Communications skills		
Unit- I		tion to computers: Computer Hardware : in		
	•	device and media – output devices and media	-	
	-	er architecture – system software: types, opera		
		ation software: types of language – applicat		-
		- Introduction to operating system - Working	g with windows	and office
		– Internet, Website and Email.		
Unit- II	-	r operating skills: Starting a program and op	-	-
		ng the document – create file and folders –	-	-
		- closing a document - renaming and movin	-	_
		- MS office: Word, Excel, Access, power po	-	e
		olications – C programming – Principles, cl	asses and structu	are of C++
TT •/ TTT	Programm		• .•	
Unit- III		ication skills in English: Understanding com	-	-
	introducing – making requests – asking for and giving permission – offering help – giving instruction and directions – art of small talk – participating in conversation –			
	-	short formal speech – Describing the people e skill: understanding, handling calls, leav	-	-
		Written communication: report writing, note		
		n vitae and cover letters – Facing an interview		
	academic		w and presentati	on skins
Unit- IV		Neural Network: Introduction of neural netw	vorks - Fuzzy L	ogic-Fuzzy
		ions-properties- defuzzyfication-fuzzy based a	•	
	fuzzy decision making-ART1 & amp, ART2 - Genetic algorithm-Traditional			
	optimization and search techniques-classification of Genetic algorithm - Neuro			
	-	orid - adaptive neuro fuzzy inference system	-	
		enetic based back propagation.		5
Unit- V	-		e Teacher: Q	ualification
	00	ompetencies and professional growth. Theory		curriculun
		ent: Concept and Technical scientific models of		
	-	a science library – Handling of practical clas		-
		sroom pedagogy: Educational Technology		
		ies –New technologies on methodology of	_	
	-	variation, questioning, explanation, reacting, lin	-	-

Suggested Readings:-

Suggested Re	Suggested Readings:-					
For Unit I an	d II:					
W.Joseph	n, Habraken, 2004, "Micorsoft office 2003", All in one, Que					
publishin	g.Curtis Frye, 2004, "Microsoft office Excel 2003 step by step",					
Microsof	t press. Greg, Harvey, 2006, "Micrsoft office Excel 2007 for					
dummies	", For dummies.					
Guy Hart	t-DEavis, 2007,"How to everything with Microsoft office word 2007", Mac					
Graw-Hil	llprofessional.					
Jim Boyc	e, 2003, "Absolute beginner's guide to Microsoft office 2003", Que publishing.					
Benny Ra wiley≻	aphael, F.C. Smith, 2003, "Fundamentals of computer-aided engineering", John					
-	An introduction to operating system", Addison Wesley					
	ni, "Principles of Programming Languages", Addison Wesley					
	rusamy, 1995, "C++ programming", Tata McGraw Hill, New Delhi.					
-	fried, 1990, "Theory and programming with C", McGraw Hill publishers,					
	k.L.Acklen et al, 1998, "Microsoft office 97 professional Essentials",					
	Hall India.					
	'Hara, 1997," Discover Office 97", Comdex computer publishing.					
For Unit-III:	29 ALAGAPPA UNIVERSITY					
Alan Bark	mbers, 2001, "Communication skills for scientific and technical professional", Perseus. er, 2000,"Improve your communication skills",Kogan page. nin, 2003, "Early communication skills for children with Down syndrome", Wood fine					
Dutt et al.,	, 2007, "A course in communication skills", ebek public, Bangalore.					
Elizabeth	son, 2004, "Communication skills", Ferguson. Arnold, Kathleen Underman Bogs, 2002, "Interpersonal Relationships Professional					
For Unit-V:	cation Skills for Nurses Saunders".					
	artman, 2001, "Metacognition in learning and instruction: theory, research and practice",					
Springer,						
	tional Science Education Standards: observe, interact, change, learn, Manual prepared by					
	esearch council", published by National Academics Press. Senblatt, 2010, "Rethinking the Way We Teach Science: The Interplay of Content,					
	, and the Nature of Science Published by Taylor & Francis".					
	hli, 1992, "How to teach science: a treatise on methodology of teaching physics, chemistry					
	gy", Published by Vivek Publishers.					
-	Durga, 1982,"A Study of the International Influences in Functional Content of Curriculum					
Program", Taba, Hild	la, 1962, "Curriculum Development- Theory and Practice", Harcourt Brace and World Inc.					
	After completing this course, students will be able to:					
	Work With C Programming And Structure of C++ Programming					
	 Design Curriculum Plan, Time Table scheduling, Evaluation – Strategies. Identify Padagaging skill for spignes teachers. 					
	 Identify Pedagogical skill for science teachers Apply Communication skills, Career skills, telephone skills. 					

Semester – II (ELECTIVE COURSES)				
Course Code 561551	e:	INFORMATION AND NETWORK SECURITY	Credits:4	Hours:4
Objectives	≻T	he use of the Internet for various purpose ind	luding social,	business,
		ommunication and other day to day activities has been	-	
		he information exchanged through Internet plays vita	1	
		ne security of such information/data is of prime import		
	≻K	nowing the concepts, principles and mechanisms for	providing secu	rity to the
	ir	formation/data is very important for the	students of	Computer
	E	ngineering/Informationtechnology.		
	≻T	he subject covers various important topics concern to	o information se	curity like
	s	ymmetric and asymmetric cryptography, hashii	ng, message	and user
	a	uthentication, digital signatures, key distribution and	overview of th	e malware
	te	echnologies.		
	≻T	he subject also covers the applications of all of these in	n real life applic	ations.
Unit- I	Info	ormation Security and Cryptography – Security	ty Goals, Set	rvices and
	Me	chanisms - Classical Encryption Methods - Transpos	ition Ciphers –	Substitution
	Cip	hers – Caesar Ciphers – Mono alphabetic Su	bstitution – H	Iomophonic
	Sub	stitution – Polygram Substitution – Playfair Ciphe	ers - Hill Ciph	ers – Poly
	alpł	nabetic Substitutions - Vigenere Ciphers – Compo	und Vigenere -	- Auto-key
	Cip	her – Running-key Cipher – Vernam Cipher – One-	-time Pad – Cr	yptographic
	cod	es – Machine Ciphe <mark>rs</mark> – Jefferson Cylinder – Rotor- ba	ased Machines.	
Unit- II	Syn	nmetric Key Crypto <mark>g</mark> raphy – Symmetric Cipher Mo	odel – Types of	f Attacks –
		ck Ciphe <mark>rs V</mark> s Stream Ciphers – Synchronous Strear	-	-
		eam Ciphers – Evaluating Block Ciphers – Modes of		
	-	hers and Multiple Encryption – DES – AES - Pu		
		oduction - Basic Principles - The Chinese Remainder		-
		torization Problem – Knapsack Public Key Encrypt		istic Public
		/ Encryption – Elliptic Curve Cryptography – Quantu		
Unit- III		ormation Hiding –Steganography – Evolution	•	
		hniques – Audio – Video – Textual Steganography -		
		Steganalysis – Applications – Digital Watermark	-	
		oduction – Preventing Unauthorized Manipulation –		
		perties – Types - The Birthday Attack – Estimate	•	U
		lision – Hash Function Design Issues – Cryptanalysis		ity of Hash
		ctions – Attacks on Hash Functions – Standard Hash		
Unit- IV		hentication – Objectives of Identification Protocol	•	
		hniques – Applications of Identification Protocols –	-	
		tocols – Authentication Mechanisms – Challenge-	-	
	-	ital Signature – Digital Certificates – X.509 Protocol		
		PTCHA – Introduction to Biometrics – Definition –		
		hnological Issues in Biometric Systems – Face		
		cognition – Iris Recognition – Voice – DNA as	a Biometric	Identifier –
	Mu	ltimodal Biometric Systems.		

Unit- V	Virus and Malware - Virus and Worms - Virus Structure and Operation -				
Unit- V	-				
	Defenses Against Viruses - Virus Writers and Antivirus Development - Generic				
	Decryption Technology – Adware and Spyware – Mitigating Malware Risks – Web				
	and Network Security - Introduction to SSL - SSL Operations and Layers - The				
	SSL Record Protocol – The Alert Protocol – The Change Cipher Spec Protocol –				
	SSL Handshake Protocol Specification - Errors – Introduction to Network Security –				
	IPSec Security Architecture – Authentication Header – Encapsulating Security				
	Payload – Security Associations – Key Management – Introduction to Firewalls –				
	Design Goals – Types of Firewalls – Firewall Configurations.Dynamic Content:				
	Visual Cryptography-Latest Techniques in Network Security.				
Suggested R	eadings:-				
	R. Patel, "Information Security: Theory and Practice", AbeBooks, 2017.				
	uz A. Forouzan, "Cryptography and Network Security", Tata McGraw Hill, 2014				
	m Stalling, "Cryptography and Network Security", Prentice Hall, 2016.				
Outcomes	After learning the course the students should be able to:				
	 Define the concepts of Information security and their use. 				
	 Describe the principles of symmetric and asymmetric cryptography. Understand and angle the unique symmetric how algorithms. 				
	 Understand and apply the various symmetric key algorithms. Understand and apply the various asymmetric key algorithms. 				
	 Understand and apply the various asymmetric key algorithms. Understand the concepts of hashing with algorithms and apply them. 				
	 Understand and use the message authentication and its requirement. 				
	 Understand the concepts of digital signature and digital certificates. 				
	List and explain various digital signature algorithms.				
	> Understand and use the various key management and remote authentication				
	mechanisms.				
	Understand the concept transport layer security.				

Semester – II (ELECTIVE COURSES)						
Course Cod 561552		ADVANCED OPERATING SYSTEMS	Credits:4	Hours:4		
Objectives		learn the fundamentals of Operating Systems.				
		gain knowledge on Distributed operating system	-			
		hitecture, Mutual exclusion algorithms, Deadlock	detection algor	ithms and		
	agreement protocols					
		gain insight on to the distributed resource manager	-			
	-	orithms for implementation of distributed shared	l memory, reco	overy and		
		nmit protocols.	a of Dool time	a Mahila		
		know the components and management aspect	s of Real tim	e, Mobile		
Unit- I	-	erating systems. ibuted Systems - Architecture types - issues - co	mmunication	otworks		
Unit-1		nunication primitives. Theoretical Foundations - in				
		logical clocks- vector clocks - casual ordering of		-		
		of a distributed computation – termination deter				
		usion – introduction–the classification of mutual				
		ithms – a comparative performance analysis.				
Unit- II	-	ibuted Deadlock Detection -Introduction - deadlock	handling strate	gies issues		
		eadlock detection and resolution – control orga				
		lock detection – centralized and distributed deadlo				
		rchical deadlock detection algorithms. Agreement p				
	syste	m model, a classification of agreement problems, s	solutions to the	Byzantine		
	agree	ement problem, applications of agreement algorith	nms. Distribute	d resource		
	mana	ngement: introduction- architecture – mechanism fo	or building dist	ributed file		
		ms – design issues – log structured file systems.				
Unit- III		ibuted shared memory-Architecture- algorithms f	-	-		
		ory coherence and protocols – design issues. I		-		
		duction – issues in load distributing – load distributin		-		
		bility –performance comparison – selecting a suitabl	-	-		
	-	rements for load distributing -task migration and				
		very and Fault tolerance: introduction– basic con- res – backward and forward error recovery, backwar	-			
		oncurrent systems – consistent set of check po	•	•		
		chronous check pointing and recovery – check	=			
	-	base systems- recovery in replicated distributed datab		aistrioutea		
Unit- IV		iprocessor operating systems - basic multiprocess		itectures –		
		connection networks for multiprocessor systems	-			
		tecture. Multiprocessor Operating System - structur				
	proce		-			
	requi	rements Concurrency control : theoretical aspects				
	syste	ms – a concurrency control model of database	systems- the p	oroblem of		
	conc	urrency control – serializability theory- distri	buted database	systems,		
		urrency control algorithms -basic synchronization	-			
	algor	ithms-timestamp based algorithms, optimistic a	lgorithms – co	oncurrency		

	control algorithms, data replication.				
Unit- V					
Suggested I	tracing - Executable Formats - Execution Domains - The exec Functions.				
MukeshSi Andrew S PradeepK design", P Pearson eo Michael B Verworne	nghal, NiranjanG.Shivaratri, 2001, "Advanced concepts in operating systems:Distributed, Database and multiprocessor operating systems", TMH. Tanenbaum, 2009, "Modern operating system", PHI. Sinha, , 2012, Distributed operating system-Concepts and HI.Andrew S.Tanenbaum, 2003, "Distributed operating system",				
Outcomes	 After learning the course the students should be able to: Discuss the various synchronization, scheduling and memory management issues Demonstrate the Mutual exclusion, Deadlock detection and agreement protocols of Distributed operating system Discuss the various resource management techniques for distributed system Identify the different features of real time and mobile operating systems Install and use available open source kernel Modify existing open source kernels in terms of functionality or features used. 				

	Semester – II (ELECTIVE COURSES)		
Course Cod 561553	e: DATA WAREHOUSING AND MINING	Credits:4	Hours:4
Objectives	 To understand data warehouse concepts, architecture To understand data pre-processing and data visualization To study algorithms for finding hidden and interesting To understand and apply various classification and controls. 	tion techniques	ı
Unit- I	Data warehousing Components –Building a Data ware Warehouse to a Multiprocessor Architecture – DBI Support – Data Extraction, Cleanup, and Transformation	AS Schemas for	r Decision
Unit- II	Reporting and Query tools and Applications – Tool O Applications – Cognos Impromptu – Online Analytical – Multidimensional Data Model – OLAP Guidelines Multi- relational OLAP – Categories of Tools – OLAP	Processing (OLA – Multidimensic Tools and the Inte	AP) – Need onal versus ornet.
Unit- III	Data mining - Introduction – Data – Types Functionalities – Interestingness of Patterns – Cla Systems – Data Mining Task Primitives – Integration o a Data Warehouse – Issues –Data Preprocessing.	ssification of D	ata Mining
Unit- IV	Mining Frequent Patterns, Associations and Correla Mining Various Kinds of Association Rules – Correl Based Association Mining – Classification and Pre- Decision Tree Induction - Bayesian Classification – Classification by Back propagation – Support Vector Classification – Lazy Learners – Other Classification	ation Analysis – liction - Basic Rule Based Clas Machines –	Constrain Concepts sification - Associative
Unit- V	Cluster Analysis - Types of Data – Categorization of M K-means Partitioning Methods – Hierarchical Methods Grid Based Methods – Model-Based Clustering M Dimensional Data - Constraint – Based Cluster Analyst Mining Applications.Various mining tools and techn Weka, Rapidminer and Matlab.	Aajor Clustering - Density-Based ethods – Cluste s – Outlier Anal	Methods – Methods – ering High ysis – Data
Suggested F			
C S R I editionP	Prabhu, 2013, "Data Warehousing – concepts, techniqu rentice, Hall of India. Ian and MichelineKamber, 2016, "Data Mining Conce		
Arun K Alex Be McGraw	Pujari, 2015, "Data Mining Techniques", Universitypress rson and Stephen J. Smith, 2007, "Data Warehousing, Da r – Hill Edition, Tenth Reprint.	ta Mining & OL	AP", Tata
Mining"	ng Tan, Michael Steinbach and Vipin Kumar, 2017, " Intr ,Pearson Education, 2e. t H Dunham, 2008, "Data mining - Introductory and adva n.		
G. K. G	upta, 2014, "Introduction to Data Mining with Case S Prentice Hall of India.	Studies", Easter	Economy

Outcomes	
	After learning the course the students should be able to:
	Design a Data warehouse system and perform business analysis with OLAP
	tools.
	> Apply suitable pre-processing and visualization techniques for data analysis
	> Apply frequent pattern and association rule mining techniques for data analysis
	 Apply appropriate classification and clustering techniques for data analysis

		Semester – II (ELECTIVE COURSES)					
Course Code 561554	e:	ARTIFICIAL INTELLIGENCEAND MACHINE LEARNING	Credits:4	Hours:4			
Objectives	 To Understand the basic concepts in Artificial Intelligence and Knowledge Become familiar with basic principles of AI toward problem solving, inference, perception, knowledge representation, and learning. To know about the basic concepts of Machine Learning To acquire knowledge about various tools of Machine Learning To understand about Probability and statistical tools 						
Unit-I	Tech Probl Produ Issue	icial Intelligence - The AI Problems – The niques lems: Problems Spaces and Search – Defining the F action Systems –Problem Characteristics – Proo s in the Design of Search Programmes - Generat First Search – Problem Reduction – Constraint ysis.	Problems as a State duction System C te – and-Test – H	Space Search – haracteristics – Hill Climbing –			
Unit-II	Knowledge Representation Issues: Representation and Mappings – Approaches to Knowledge Representation – Issues in Knowledge Representation – The Frame Problem - Using predicate logic – Representing Simple facts in Logic – Representing Instance and Is a relationships – Computable functions and Predicates – Resolutions – Natural Deductions – Representing Knowledge Using Rules: Procedural versus Declarative Knowledge – Forward versus Backward Reasoning – Matching – Control Knowledge.						
Unit-III	Introduction to Machine Learning : Human Learning - Types of Human Learning - Machine Learning - Types of Machine Learning - Problems Not to be Solved using Machine Learning - Applications of Machine Learning - State of the Art Languages / Tools in Machine Learning - Issues in Machine Learning						
Unit-IV	Learn proce Mode	aring to Model: Introduction - Machine Learning A ning - Exploring Structure of Data - Data Qualit ssing. Modelling and Evaluation : Introduction - el - Model Representation and Interpretability – Eva oving Performance of a Model.	y and Remuneration Selecting a Mod	ion - Data Pre- lel - Training a			
Unit-V	Learn Multi Hypo Introc	view of Probability : Introduction - Importance ning - Concept of Probability - Random Variables - ple Random Variables - Central Limit Theor thesis Testing - Monte Carlo Approximation duction - Importance of Bayseian Methods - Baye ept Learning - Bayesian Belief Network.	Common Discrete rem - Sampling - Bayesian Conc	e Distributions - Distributions - ept Learning :			
Public Graw I <i>Educa</i>	Readin dha Sri ations. Hill - (<i>tion In</i>		ficial Intelligence" odern Approach, P	earson			

Education; First Edition, (Unit III, IV and V)								
Outcomes	• Understand about Artificial Intelligence and about Knowledge Representation							
	Knowledge about AI development tools							
	• Understand machine learning model for simulation and analysis.							
	• Explore the current scope, potential, limitations, and implications of intelligent							
	systems.							
	• Understand about the Basic Types of Machine Learning, Modelling,							
	Evaluation and Probability.							

	Semester – II (ELECTIVE COURSES)						
Course Cod							
561555							
Objectives	To unders	stand the basic con-	cepts of mobile comp	outing.			
	To learn the basics of mobile telecommunication system.						
	> To be familiar with the network layer protocols and Ad-Hoc networks.						
	> To know	the basis of transpo	ort and application lag	yer protocols.			
	To gain k	nowledge about di	fferent mobile platfor	rms and application	on		
	developm	ent					
Unit- I	Medium Acc	ess Control – Mo	tivation for Specializ	ed MAC – SDM	A – FDMA		
	- TDMA - C	CDMA – Comparis	son of Access Mecha	nisms – Tele cor	nmunications		
	GSM – DEC	CT – TETRA – U	MTS - IMT - 200	- Satellite Syste	ems Basics –		
	Routing – L	ocalization – Ha	ndover – Broadcast	Systems Overvi	ew – Cyclic		
	Repetition of	Data – Digital Au	dio Broadcasting – D	igital Video Broa	dcasting.		
Unit- II	Search and	Game Playing:	Breadth first search	, depth first sea	rch, iterative		
	deepening, u	iniform cost sear	ch, hill climbing,	simulated annea	ling, genetic		
	algorithm se	earch, heuristic se	earch, Best first s	earch, A* algo	orithm, AO*		
	algorithm, N	thm, Minmax& game trees, refining minmax, Alpha – Beta pruning,					
	constraint sat	isfaction					
Unit- III	Wireless LA	N Infrared Vs Rad	i <mark>o Transmiss</mark> ion – Int	frastructure Netw	orks– Ad hoc		
	Networks –	IEEE 8 <mark>02</mark> .11 –	HIPERLAN – E	Bluetooth – Wi	reless ATM		
	Working Gro	orking Group– Services – Reference Model – Functions – Radio Access Layer					
	– Handover	- Handover - Location Management - Addressing Mobile Quality of Service -					
	Access Point	Control Protocol.					
Unit- IV	Traditional TCP – Indirect TCP – Snooping TCP – Mobile TCP – Fast Retransmit/						
	Fast Recover	ry – Transmission	/ Timeout Freezing	- Selective Retr	ansmission –		
	Transaction (Driented TCP.	DEXCELLS				
Unit- V	Architecture	– Datagram Pro	tocol – Transport I	Layer Security –	Transaction		
	Protocol – S	ession Protocol -	Application Enviro	onment – Wireles	ss Telephony		
	Application.						
	Dynamic content:						
	MOBILE TRANSPORT AND APPLICATION LAYER: Mobile TCP–WAP						
	- Architecture - WDP - WTLS - WTP - WSP - WAE - WTA Architecture -						
	WML						
	MOBILE PI	LATFORMS ANI	APPLICATIONS				
	Mobile Devi	ice Operating System	stems – Special Co	onstraints & Rec	quirements –		
	Commercial	Mobile Operatin	g Systems – Softv	vare Developme	nt Kit: iOS,		
	Android, Bla	ckBerry, Windows	s Phone – MComme	rce – Structure –	Pros & Cons		
	– Mobile Pay	rment System – Se	curity Issues				

Suggested I	Readings:-					
J.Schiller, 2	003," Mobile Communication", Addison Wesley.					
William Sta	llings, 2005, "Wireless Communication and Networks", Pearson					
Education 2	e.Singhal, 2003, "WAP: Wireless Application Protocol", Pearson					
Education.						
LotherMerk	, Martin S. Nicklaus and Thomas Stober, 2011, "Principles of Mobile Computing",					
2ndEdition,	Springer,.					
William C.	Y. Lee, 2010, "Mobile Communication Design Fundamentals", John Wiley, 2e.					
Prasant Kun	nar Pattnaik, Rajib Mall, 2012, "Fundamentals of Mobile Computing", PHI Learning					
Pvt.Ltd,Nev	v Delhi.					
Outcomes	After learning the course the students should be able to:					
	Explain the basics of mobile telecommunication systems					
	Illustrate the generations of telecommunication systems in wireless					
	networks					
> Determine the functionality of MAC, network layer and Identify a						
	routingprotocol for a given Ad hoc network					
	Explain the functionality of Transport and Application layers					
	Develop a mobile application using android/blackberry/ios/Windows					

SDK.

	Semester – II (ELECTIVE COURSES)						
Course C 561556	ode:	INTERNET OF THINGS Credits:4					
Objectives	To understand the fundamentals of Internet of Things.						
	> To learn about the basics of IOT protocols.						
	> To build a small low cost embedded system using Raspberry Pi.						
	► To a	apply the concept of Internet of Things in the real	world scenario				
Unit- I	INTRO	DUCTION TO IoT: Internet of Things - 1	Physical Design	n- Logical			
	Design	- IoT Enabling Technologies - IoT Levels &	Deployment T	emplates -			
	Domain	n Specific IoTs - IoT and M2M - IoT Sy	ystem Manager	nent with			
	NETCO	DNF-YANG- IoT Platforms Design Methodology					
Unit- II	IoT Al	RCHITECTURE: M2M high-level ETSI archit	ecture - IETF a	rchitecture			
		-OGC architecture - IoT reference model - Do					
	model -	- functional model - communication model - IoT	reference archite	ecture			
Unit- III	IoT Pl	ROTOCOLS: Protocol Standardization for Io	Γ – Efforts – 1	M2M and			
	WSN P	rotocols – SCADA and RFID Protocols – U	Inified Data St	andards –			
		ols – IEEE 802.15.4 – BACNet Protocol – Mod					
		ork layer –6LowPAN - CoAP – Security.	e				
Unit- IV		DING IOT WITH RASPBERRY PI &	ARDUINO:	Building			
	IOT v	vith RASPERRY PI- IoT Systems - Logical De	sign using Pyth	non – IoT			
		l Devices & Endpoints - IoT Device -Building					
	-	- Linux on Raspberry Pi - Raspberry Pi 1		-			
	Raspberry Pi with Python - Other IoT Platforms -Arduino.						
Unit- V	CASE STUDIES AND REAL-WORLD APPLICATIONS: Real						
	world	design constraints - Applications - Asset	management,	Industrial			
	automation, smart grid, Commercial building automation, Smart cities -						
	particip	atory sensing - Data Analytics for IoT – Softwa	re & Managem	ent Tools			
	for Io7	Cloud Storage Models & Communication	APIs - Cloud	for IoT -			
	Amazon Web Services for IoT.						
Suggested R	andings						
00	0	- y Madisetti, 2015, "Internet of Things: A hands-o	n annraach" U	iversities			
-		ann, Mark Harrison, Michahelles, Florian (Eds), 2					
Internet of Th			2011, Areintee	ung the			
	•		e Perspective"	CRC Press			
	, 2012, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press.						
	r, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. e, 2014, "From Machine-to-Machine to the Internet of Things - Introduction to a New						
•	lligence", Elsevier.						
0	•	vid Boswarthick, Omar Elloumi, 2012, "The I	nternet of Thir	ngs - Kev			
		bocols", Wiley.		igs – Key			
Outcomes	T	-	4				
Jucomes		earning the course the students should be able	to:				
		Analyze various protocols for IoT.	95				
		Develop web services to access/control IoT devic Design a portable IoT using Rasperry Pi.	5.				
	 Design a portable for using Rasperty 11. Deploy on IoT application and connect to the cloud 						

- Deploy an IoT application and connect to the cloud.
 Analyze applications of IoT in real time scenario

Semester – II (ELECTIVE COURSES)								
Course Cod	e:	DEEP LEARNING	Credits:4	Hours:4				
561557	1							
Objectives		oduce major deep learning algorithms, the proble	m settings, and	their				
		licationsto solve real world problems.						
		1						
		understand the traning deep models and sequence						
Unit- I		ction : Historical Trends in Deep Learning -	-					
		s, Matrices and Tensors – Machine Learning Bas						
	-	ty, Overfitting and Underfitting - Hyperparame						
		tors, Bias and Variance - Maximum Likeliho		•				
	Statisti	cs - Supervised Learning Algorithms - Unsuperv	ised Learning A	lgorithms -				
	Stochas	stic Gradient Descent – Building Machine learn	ing algorithm –	Challenges				
		ting Deep Learning.						
Unit- II		FeedForward Networks : Gradient-based Lea	-					
		cture Design - Back-Propagation and Other D		e				
	-	rization for Deep Learning : Parameter Norm Pe						
		nined Optimization - Regularization and Unde						
		: Augmentation – Noise Robustness – Semi-super	-					
		ng – Early stopping - Parameter Tying and Pa		0 1				
	Representations - Bagging and Other Ensemble Methods - Adversarial Training -							
	-	Tangent Distance, Tangent Prop and Manifold Tangent Classifier						
Unit- III	-	zation for Training Deep Models : How Le	-					
	Optimization - Challenges in Neural Network Optimization – Basic Algorithms :							
	Stochastic Gradient Descent, Momentum, Nesterov Momentum - Parameter							
	Initialization Strategies - Algorithms with Adaptive Learning Rates : AdaGrad,							
	RMSProp, Adam, Choosing the Right Optimization Algorithm - Approximate							
	Second-Order Methods : Newton's Method, Conjugate Gradients, BFGS							
	Algorithm - Optimization Strategies and Meta-Algorithms : Batch Normalization,							
	Coordinate Descent, Polyak Averaging, Supervised Pretraining, Designing							
		to Aid Optimization, Continuation Methods and		-				
Unit- IV		utional Networks : The Convolution Operation		-				
		ution and Pooling as an Infinitely Strong Prior						
		ution Function – Structured Outputs – Data Typ						
		hms - Random or Unsupervised Features - The						
		utional Networks - Convolutional Networks a	and the History	/ of Deep				
	Learnir	<u> </u>	xx 0.1.11 ==					
Unit- V	_	ce Modeling: Recurrent and Recursive Nets -	-	-				
	_	- Recurrent Neural Networks - Bidirectional						
	_	ce-to- Sequence Architectures - Deep Recurre						
		Networks - The Challenge of Long-Term De	-					
		ks - Leaky Units and Other Strategies for Mu	-					
		hort-Term Memory and Other Gated RNNs - Op	otimization for I	Long-Term				
	Depend	lencies – Explicit Memory						

Suggested Read	Suggested Readings:-						
Ian Goodfellow	Ian Goodfellow and YoshuaBengio and Aaron Courville, 2016, "Deep Learning", MIT						
PressMichael Ni	elsen, , 2016, "Neural Networks and Deep Learning", Online Book						
YoshuaBengio, 2	2009, "Learning Deep Architectures for AI", NOW Publishers						
Outcomes	After learning the course the students should be able to:						
	> Identify problems where artificial intelligence techniques are applicable						
	 Apply selected basic AI techniques; judge applicability of more advancedtechniques. 						
	Participate in the design of systems that act intelligently and learn from						
	experience.						

Semester – II (ELECTIVE COURSES)									
Course (Code:	DIGI	FAL IMA	AGE PI	ROCES	SING		Credits:4	Hours:4
561558 Objectives	imag ➤ To fa ➤ To e: appli imag	es transform miliarize th xpose the st cations. To e processin	ns. ne student tudent to a appreciat g systems	with th a broad te the u	ne image range c use of c	e enhancen of image pr urrent tech	nent te rocessi mologi	processing an chniques. ng technique es those are e processing.	es and their specific to
Unit- I	Digital Image Processing: Origins of Digital Image Processing, Steps in Digital Image Processing, Digital Image Fundamentals: Elements of Visual Perception, Light and the Electromagnetic Spectrum, Image Sensing and Acquisition, Image Sampling and Quantization, Basic Relationships between Pixels, Mathematical Tools used in DigitalImage Processing.								
Unit- II	Image Transformation & Filters: Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Spatial Filter, Sharpening Spatial Filters, Combining Spatial Enhancement methods, Fuzzy techniques for Intensity Transformation and Spatial Filtering. Filtering in the Frequency Domain: Preliminary Concepts, Sampling and the Fourier Transforms of Sampled Functions, The Discrete Fourier Transform (DFT), Properties of the 2-D DFT, Filtering in the Frequency Domain, Image Smoothing and Sharpening using Frequency Domain Filters, Selective Filtering.								
Unit- III	Noise o Filtering Function Square I Image S	nly- Spatia , Linear, 1 ns, Inverse Filtering, G egmentation tation, Segr	ation prod 1 Filtering Position-I Filtering, cometric n: Point, I	g, Peri nvariar , Wien Mean Line an	Noise N odic N nt Degn ner Squ Filter, I nd Edge	oise Redu radations, are Error mage Rec Detection	estorati action Estim Filteri constru , Three	Segmentation on in the p by Frequenc ating the D ing, Constra ction from F sholding, Reg neds, Use of	resence of by Domain Degradation ined Least Projections. gion-Based
Unit- IV	Processi Sharpeni and Mul One Din Dimensi	ng, Full Co ing, Image tiresolution mension, T	olor Imag Segmenta Processir The Fast elet Pac	ge Proc tion Ba ng: Mu Wavel kets.	essing, ased on ltiresolu et Trar Image	Color Tra Color, No ttion Expa sforms, N Compres	ansforr ise in (insion, Wavele	els, Pseudoco nation, Smo Color Images Wavelet Tra t Transform Fundamenta	othing and Wavelets nsforms in as in Two
Unit- V	Morphol Hit-Or- Morphol	logical Imag Miss Tra	ge Process Insformati t Recogni	sing: E on, B ition: P	crosion a asic M atterns	and Dilation Iorphologicand Patter	cal A	ening and Cl lgorithms, ses, Recogni	Gray-Scale

Suggested Readings:-

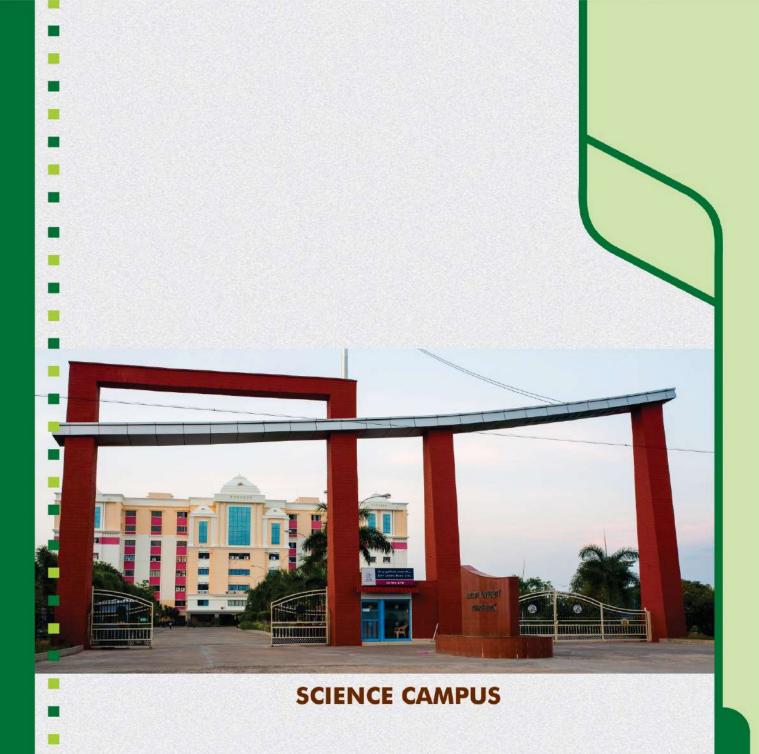
Rafael C. Gonzalez, Richard E. Woods, 2018, "Digital Image Processing", 4th Edition, Pearson Education.

A. Jain, 2001,"Fundamentals of Digital Image Processing", Prentice Hall of India.

B. Chandra and D.Dutta Majumder, 2006, "Digital Image Processing and Analysis", Prentice-Hall of Indiaprivate limited, New delhi,.

		1 / /							
	Outcomes	After learning the course the students should be able to:							
		Implement basic image processing algorithms.							
		Design an application that uses different concepts of Image Processing.							
 Apply and develop new techniques in the areas of image enhant restoration segmentation- compression-wavelet processing and imate morphology. 									
		 Critically analyze different approaches to different modules of Image Processing. 							

	Semester – II (ELECTIVE COURSES)						
Course (561559	Code:	CLOUD COM	MPUTING	Credits:4	Hours:4		
Objectives	To underst	and the concept of cloud	and utility computi	ng.			
3	> To understand the various issues in cloud computing.						
		To familiarize themselves with the lead players in cloud.					
		ate the emergence of clo	1.		g paradigm.		
		to set up a private cloud	-	-			
Unit- I	Introduction	to Cloud Computing,	Definition, Cha	aracteristics, C	Components,		
	Cloud provide	er, SAAS, PAAS, IAA	AS and Others, O	rganizational s	cenarios of		
	clouds, Admir	istering & Monitoring c	loud services, bene	fits and limitati	ons, Deploy		
	application ov	er cloud, Comparison a	mong SAAS, PAA	S, IAAS Cloud	l computing		
	platforms: Infi	astructure as a Service:	Virtual Machines -	Layered Archi	tecture-Life		
	Cycle – VM	Provisioning Process	s – Provisioning	and Migration	n Services.		
	Management of	of Virtual Machines Inf	rastructure – Scheo	luling Techniq	ues. Cluster		
	as a service -	- RVWS Design - Log	gical Design. Cloud	d Storage - Ar	nazon EC2,		
	Platform as S	ervice: Google App E	Engine, Microsoft	Azure, Utility	Computing,		
	Elastic Compu	ting.	Sector Sector				
Unit- II	Introduction t	o Cloud Technologies,	Study of Hypervis	sors Compare	SOAP and		
		vices, AJAX and mash	-				
		versus REST, AJAX: asynchronous 'rich' interfaces, Mashups: user interface					
		vices Virtualization Technology: Virtual machine technology, virtualization					
	applications in enterprises, Pitfalls of virtualization Multitenant software: Multi-						
	entity support, Multi-schema approach, Multitenance using cloud data stores, Data						
	access control for enterprise applications.						
Unit- III		loud: Relational databa			,		
	-	ase and Dynamo. Map-					
	-	ice model, Parallel effic			-		
	0 1	duce, Enterprise batch p	0 0	• ·			
		pment, Example/App		-	tures and		
II •4 IN7	-	mong GFS,HDFS etc, 1	-		D' 1		
Unit- IV		fundamentals, Vulnera					
		cloud Cloud comp					
		- General Issues, Tr	-	u O			
		and Communications, I Ildentity management,					
		urity challenges: Virtua					
		y Recommendations,	-	becurity techniq			
		ironments and Commun	=		lucs, secult		
	EXECUTION ENV	nonnents and Commun					


Unit- V	Issues in cloud computing, Implementing real time application over cloud platform,						
	Issues in Intercloud environments, QOS Issues in Cloud, Dependability, data						
	migration, streaming in Cloud. Quality of Service (QoS) monitoring in a Cloud						
	computing environment. Cloud Middleware. Mobile Cloud Computing. Inter Cloud						
	issues. A grid of clouds, Sky computing, load balancing, resource optimization,						
	resource dynamic reconfiguration, Monitoring in Cloud'. Cloud computing						
	platforms, Installing cloud platforms and performance evaluation Features and						
	functions of cloud platforms: Xen Cloud Platform, Eucalyptus, OpenNebula,						
	Nimbus, TPlatform, Apache Virtual Computing Lab (VCL), Enomaly Elastic						
	Computing PlatformApplications: Best Practices in Architecting cloud applications						
	in the AWS cloud – Massively multiplayer online Game hosting on cloud						
	Resources – Building content delivery Networks using clouds – Resource cloud						
	Mashups.						
Suggested	Readings:-						
Naresh Ku	umar Sehgal Pramod Chandra P. Bhatt, 2018, "Cloud Computing: Concepts						
an	dPractices, Springer", 1st ed.						
Judith Hur	witz, R.Bloor, M.Kanfman, F.Halper, 2012, "Cloud Computing for Dummies",						
(Wiley Ind	iaEdition).						
	e Sosinsky, 2013, "Cloud Computing", Wiley India.						
GautamSh	roff, Cambridge, , 2013, "Enterprise Cloud Computing".						
Ronald Kru	atz and Russell Dean Vines, 2014, "Cloud Security ", Wiley-India,.						
RajkumarE	Buyya, James Broberg, and AndrzejGoscinski, 2011, "Cloud Computing Principles						
andParadig	ms", John Wiley and Son <mark>s,</mark> Inc,						
George Re	ese, 2009, "Cloud Application Architectures, First Edition, O'Reilly Media, Inc.						
Outcomes	After learning the course the students should be able to:						
	> Articulate the main concepts, key technologies, strengths and limitations						
	of cloudcomputing.						
	 Identify the architecture, infrastructure and delivery models of cloud 						
	computing.						
	> Explain the core issues of cloud computing such as security, privacy and						
	interoperability.						
	Choose the appropriate technologies, algorithms and approaches for the						
	relatedissues.						

Semester – II (ELECTIVE COURSES)							
Course Code:		BIG DATA ANALYTICS	Credits:4	Hours:4			
561560							
Objectives	To know the fundamental concepts of big data and analytics.						
	To explore tools and practices for working with big data.						
	🍃 🔺 To	learn about stream computing.					
	\succ To know about the research that requires the integration of large amount						
Unit- I	INTRODUCTION TO BIG DATA : Big Data – Definition, Chara						
	Featur	es - Big Data Applications - Big Data vs Tradit	ional Data - Ri	sks of Big			
	Data - Structure of Big Data - Challenges of Conventional Systems - WebEvolution of Analytic Scalability - Evolution of Analytic Processes, Too						
	methods - Analysis vs Reporting - Modern Data Analytic Tools.						
Unit- II	- II HADOOP FRAMEWORK : Distributed File Systems - Large-S System Organization – HDFS concepts - MapReduce Execution, A						
	using	MapReduce, Matrix-Vector Multiplication – Hadoo	p YARN				
Unit- III	- III DATA ANALYSIS :Statistical Methods: Regression modelling, Mult Analysis - Classification: SVM & Kernel Methods - Rule Mining -						
	Analy	sis, Types of Data in Cluster Analysis, Partitioni	ng Methods, H	lierarchica			
	Metho	ds, Density Based Methods, Grid Based M	Methods, Mod	lel Based			
	Cluste	ring Methods, Clustering High Dimensional Dat	ta - Predictive A	Analytics -			
	Data analysis using R.						
Unit- IV	MINING DATA STREAMS :Streams: Concepts – Stream Data Model and						
	Archit	ecture - Sampling data in a stream - Mining 1	Data Streams a	and Minin			
	Time-	series <mark>data</mark> – Real Time Analytics Platform (RI	AP) Application	ons - Cas			
	Studies - Real Time SentimentAnalysis, Stock Market Predictions.						
Unit- V	BIG DATA FRAMEWORKS : Introduction to NoSQL – Aggregate Data Models						
	- Hbase: Data Model and Implementations - Hbase Clients - Examples -						
	Cassar	ndra: Data Model – Examples – Cassandra Clier	nts – Hadoop	Integration			
	Pig - Grunt - Pig Data Model - Pig Latin - developing and testing						
	scripts	. Hive – Data Types and File Formats – HiveQL	Data Definition	n – HiveQl			
	Data N	Manipulation – HiveQL Queries.					
Suggested F	Reading	s:-					
00	0	Faming the Big Data Tidal Wave: Finding Opport	inities in Huge	Data			
-	-	ced Analytics", Wiley and SAS Business Series.		Dutu			
		, "Big Data Analytics: From Strategic Planning to	Enterprise Inter	pration			
		ues, NoSQL, and Graph".		Bration			
-	-	avid J. Hand, 2007, "Intelligent Data Analysis", Se	cond Edition. S	pringer.			
		lichelle Chambers, and AmbigaDhiraj, 2013, "Bi					
		ntelligence and Analytic Trends for Today's Busin					
		1. Fowler, 2012, "NoSQL Distilled: A Brief Guide	•	world of			
-		", Addison-Wesley Professional,.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		3, "Learning R – A Step-by-step Function Guide to	Data Analysis'	'. O'Reilly			
Media.	, 201			,			

Outcomes	After learning the course the students should be able to:				
	Work with big data tools and its analysis techniques.				
	Design efficient algorithms for mining the data from large volumes.				
	Design an efficient recommendation system.				
	Design the tools for visualization.				
	Learn No SQL databases and management.				

		Semester – II (ELECTIVE COURSES)					
Course Code:		BLOCKCHAIN TECHNOLOGY	Credits:4	Hours:4			
561561							
Objectives	•	To Introduce the Basic Concepts and Types					
	•	To understand the concept of Private and Publi					
	•						
	•	• To know about Security and Applications of Blockchain Technology.					
TT • / T	•	To know about how to perform a transaction in bitcoin					
Unit-I	Fundamentals of Blockchain : Introduction - Origin of Blockchain - Blockchain Sc						
	- Components of Blockchain - Components of Blockchain - Block in Blockchain Technology and the Future.						
Unit-II							
01111-11	Blockchain types and Consensus Mechanism : Introduction - Decentralization and						
	 Distribution - Types of Blockchain - Consensus Protocol - CRYPTOCURRENCY - BITCOIN, ALTCOIN and TOKEN: Introduction - Bitcoin and Crypto currency Basics - Types of Crypto currency - Crypto currency Usage. 						
Unit-III	Public Blockchain System: Introduction - Public Blockchain - Popular Public						
	Blockchains - TheBitcoin Clockchain - EtherumBlockchain.						
Unit-IV	Duiru	ta Diastratain Sector a lutra tratica - Karr Ch	an stanistics of Duis	vota Dia sirahain			
	Private Blockchain System : Introduction - Key Characteristics of Private Blockchain - Why We Need Private Blockchain - Private Blockchain Examples - Private Blockchain						
	and Open Source - E-Commerce Site Examples - Varous Commands in E-Commerce						
	Blockchain - Smart Contract in Private Environment - State Machine - Different						
	Algorithms of Permissioned Blockchain - Byzantine Fault – Multichain.						
Unit-V							
	Security in Blockchain : Introduction - Security Aspects in Bitcoin - Security and Pri Challenges of Blockchain in General - Performance and Scalability - Ide						
	Management and Authentication - Regularity Compliance and Assurance - Safeguardin						
	Blockchain Smart Contract - Security Aspects in Hyper ledger Fabric - Applications C						
	Blockchain : Blockchain in Banking and Finance - Blockchain in Healthcare.						
Suggested F	Readir	igs:-					
		li Subramaniam, AshaA George, Abhilash K	A, Meera Karthik	eyan, Blockchain			
		ology,2020, University Press					
		cher Blockchain Basics, 2017,: A Non-Technical I	-	ess			
-	aniMo	hanty ,2018, Block Chain From Concept to Exect					
Outcomes	•	Understand the Basic Idea of Blockchain Tech					
	•		-				
	•	Identify the Differences Between Public and P	rivate Blockchain 7	Technologies.			
	•	Know about Algorithms in Blockchain technol	ogy.				
	•	Understanding the Security Challenges					

